Elemental analysis of freeze-dried thin sections of Samanea motor organs: barriers to ion diffusion through the apoplast

نویسندگان

  • R L Satter
  • R C Garber
  • L Khairallah
  • Y S Cheng
چکیده

Leaflet movements in the legume Samanea saman are dependent upon massive redistribution of potassium (K), chloride (Cl), and other solutes between opposing (extensor and flexor) halves of the motor organ (pulvinus). Solutes are known to diffuse through the apoplast during redistribution. To test the possibility that solute diffusion might be restricted by apoplastic barriers, we analyzed elements in the apoplast in freeze-dried cryosections of pulvini using scanning electron microscopy/x-ray microanalysis. Large discontinuities in apoplastic K and Cl at the extensor-flexor interface provide evidence for a barrier to solute diffusion. The barrier extends from the epidermis on upper and lower sides of the pulvinus to cambial cells in the central vascular core. It is completed by hydrophobic regions between phloem and cambium, and between xylem rays and surrounding vascular tissue, as deduced by discontinuities in apoplastic solutes and by staining of fresh sections with lipid-soluble Sudan dyes. Thus, symplastic pathways are necessary for ion redistribution in the Samanea pulvinus during leaflet movement. In pulvini from leaflets in the closed state, all cells on the flexor side of the barrier have high internal as well as external K and Cl, whereas cells on the extensor side have barely detectable internal or external K or Cl. Approximately 60% of these ions are known to migrate to the extensor during opening; all return to the flexor during subsequent closure. We propose that solutes lost from shrinking cells in the outer cortex diffuse through the apoplast to plasmodesmata-rich cells of the inner cortex, collenchyma, and phloem; and that solutes cross the barrier by moving through plasmodesmata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoplastic transport of ions in the motor organ of Samanea.

Turgor-mediated leaf movements of the legume Samanea saman are associated with the migration of K(+) and Cl(-) between opposing sides of the motor organs (pulvini). We have investigated the pathway of this ion migration by localizing K(+) and Cl(-) within the secondary pulvinus at various times during leaf movements. Ion distributions in freeze-dried cryosections of pulvini were determined by s...

متن کامل

Preparation of Biological Samples for Ion Microscopy

Ion Microscopy is a powerful technique for intracellular elemental localization in b specimens. The effechve w of this technique depends on the reliability of sample preparation. An ideal Sam le reparation should preserve the chemical and structural integrity of a living cell, and it shouPd ago satisfy the instrumental requirements for analysis. This article critically reviews different methods...

متن کامل

LOW-ENERGY-ION ENHANCED DIFFUSION AT THE SURFACE OF METALS

Radiation enhanced diffusion at the surface of metals has been observed and studied for low-energy nitrogen ions at the surface of copper. The displacement of the target atoms during irradiation creates vacancies and other defects near the surface, thus enhancing the diffusion of implanted materials toward the surface and also into the solid. The mechanism has been studied here by a specia...

متن کامل

Zinc mapping and density imaging of rabbit pancreas endocrine tissue sections using nuclear microscopy.

Nuclear microscopy is a suite of techniques based on a focused beam of MeV protons. These techniques have the unique ability to image density and structural variations in relatively thick tissue sections, map trace elements at the cellular level to the microgram per gram (dry weight) level, and extract quantitative information on these elements. The trace elemental studies can be carried out on...

متن کامل

Effects of temperature on h uptake and release during circadian rhythmic movements of excised samanea motor organs.

A previous study revealed that Samanea saman leaflets open more completely and close less completely as temperature is increased. We now demonstrate that, as temperature is increased, extensor cells release more H(+) during their swelling phase (opening), but flexor motor cells release less H(+) during their swelling phase (closure).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 95  شماره 

صفحات  -

تاریخ انتشار 1982